7,499 research outputs found

    Packing-Limited Growth

    Get PDF
    We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore space, a theory that we confirm via numerical simulations. The scaling theory also predicts an upper bound for the universal exponent and is in exact agreement with numerical results for d=4.Comment: 6 pages, 5 figures, 4 tables, revtex4 to appear in Phys. Rev. E, May 200

    Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment

    Get PDF
    Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items

    The impact of physical and mental tasks on pilot mental workoad

    Get PDF
    Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots

    Effect of time span and task load on pilot mental workload

    Get PDF
    Two sets of experiments were run to examine how the mental workload of a pilot might be measured. The effects of continuous manual control activity versus discrete assigned mental tasks (including the length of time between receiving an assignment and executing it) were examined. The first experiment evaluated the strengths and weaknesses of measuring mental workload with an objective perforamance (altitude deviations) and five subjective ratings (activity level, complexity, difficulty, stress, and workload). The second set of experiments built upon the first set by increasing workload intensities and adding another performance measure: airspeed deviation. The results are discussed for both low and high experience pilots

    Effect of time span and task load on pilot mental workload

    Get PDF
    Two sets of simulations designed to examine how a pilot's mental workload is affected by continuous manual-control activity versus discrete mental tasks that included the length of time between receiving an assignment and executing it are described. The first experiment evaluated two types of measures: objective performance indicators and subjective ratings. Subjective ratings for the two missions were different, but the objective performance measures were similar. In the second experiments, workload levels were increased and a second performance measure was taken. Mental workload had no influence on either performance-based workload measure. Subjective ratings discriminated among the scenarios and correlated with performance measures for high-workload flights. The number of mental tasks performed did not influence error rates, although high manual workloads did increase errors

    Quantum Walk on a Line with Two Entangled Particles

    Full text link
    We introduce the concept of a quantum walk with two particles and study it for the case of a discrete time walk on a line. A quantum walk with more than one particle may contain entanglement, thus offering a resource unavailable in the classical scenario and which can present interesting advantages. In this work, we show how the entanglement and the relative phase between the states describing the coin degree of freedom of each particle will influence the evolution of the quantum walk. In particular, the probability to find at least one particle in a certain position after NN steps of the walk, as well as the average distance between the two particles, can be larger or smaller than the case of two unentangled particles, depending on the initial conditions we choose. This resource can then be tuned according to our needs, in particular to enhance a given application (algorithmic or other) based on a quantum walk. Experimental implementations are briefly discussed

    Human Factors in Automated and Robotic Space Systems: Proceedings of a symposium. Part 1

    Get PDF
    Human factors research likely to produce results applicable to the development of a NASA space station is discussed. The particular sessions covered in Part 1 include: (1) system productivity -- people and machines; (2) expert systems and their use; (3) language and displays for human-computer communication; and (4) computer aided monitoring and decision making. Papers from each subject area are reproduced and the discussions from each area are summarized

    Streamwise forced oscillations of circular and square cylinders

    Get PDF
    The modification of a cylinder wake by streamwise oscillation of the cylinder at the vortex shedding frequency of the unperturbed cylinder is reported. Recent numerical simulations [J. S. Leontini, D. Lo Jacono, and M. C. Thompson, “A numerical study of an inline oscillating cylinder in a free stream,” J. Fluid Mech. 688, 551–568 (2011)] showed that this forcing results in the primary frequency decreasing proportionally to the square of the forcing amplitude, before locking to a subharmonic at higher amplitudes. The experimental results presented here show that this behavior continues at higher Reynolds numbers, although the flow is three-dimensional. In addition, it is shown that this behavior persists when the body is a square cross section, and when the frequency of forcing is detuned from the unperturbed cylinder shedding frequency. The similarity of the results across Reynolds number, geometry, and frequency suggests that the physical mechanism is applicable to periodic forcing of the classic von Ka ́rma ́n vortex street, regardless of the details of the body which forms the street

    The Sunset of the Holocaust Expropriated Art Recovery Act of 2016 and the Rise of the Demand and Refusal Rule

    Get PDF
    During World War II, hundreds of thousands of works of art were confiscated by Nazis under the direction of Adolf Hitler or sold for less than market value by members of the Jewish community fleeing Nazi Germany. Shockingly, an estimated 100,000 of the 600,000 works that were taken are still missing today. In recognition of the need for laws that adequately assist original owners (and their heirs) in recovering these works of art, the U.S. Congress passed the Holocaust Expropriated Art Recovery Act of 2016 (“the HEAR Act”). The HEAR Act supplanted state statutes of limitations for Naziconfiscated artwork with a national six-year statute of limitations. A cause of action for replevin of Nazi-confiscated artwork under the HEAR Act accrues once the original owner has “actual knowledge” of a claim against the current possessor. The HEAR Act contains a sunset provision—causing it to expire on January 1, 2027. Upon expiration, the law applied to cases of Nazi-confiscated art recovery will revert to state statutes. This Note examines two state accrual rules for causes of action for replevin of personal property—the discovery rule and the demand and refusal rule—and proceeds to examine their strengths and weaknesses. This Note suggests that the HEAR Act should be used as a model for states to address the need for claimant-friendly accrual rules for causes of action for replevin. Ultimately, this Note argues that upon expiration of the HEAR Act: (1) states, rather than the federal government, should adopt the demand and refusal rule; (2) the rule should be applied to all types of stolen chattels, not just Naziconfiscated art; (3) demand and refusal should be applied to thieves and badfaith purchasers, not just good-faith purchasers; (4) the rule should not be applied retroactively to avoid constitutionality concerns; and (5) the duration of the statute of limitations should be shortened
    corecore